A new perceptually motivated MVDR-based acoustic front-end (PMVDR) for robust automatic speech recognition

نویسندگان

  • Umit H. Yapanel
  • John H. L. Hansen
چکیده

Acoustic feature extraction from speech constitutes a fundamental component of automatic speech recognition (ASR) systems. In this paper, we propose a novel feature extraction algorithm, perceptual-MVDR (PMVDR), which computes cepstral coefficients from the speech signal. This new feature representation is shown to better model the speech spectrum compared to traditional feature extraction approaches. Experimental results for small (40-word digits) to medium (5k-word dictation) size vocabulary tasks show varying degree of consistent improvements across different experiments; however, the new front-end is most effective in noisy car environments. The PMVDR front-end uses the minimum variance distortionless response (MVDR) spectral estimator to represent the upper envelope of the speech signal. Unlike Mel frequency cepstral coefficients (MFCCs), the proposed front-end does not utilize a filterbank. The effectiveness of the PMVDR approach is demonstrated by comparing speech recognition accuracies with the traditional MFCC front-end and recently proposed PMCC front-end in both noise-free and real adverse environments. For speech recognition in noisy car environments, a 40-word vocabulary task, PMVDR front-end provides a 36% relative decrease in word error rate (WER) over the MFCC front-end. Under simulated speaker stress conditions, a 35-word vocabulary task, the PMVDR front-end yields a 27% relative decrease in the WER. For a noise-free dictation task, a 5k-word vocabulary task, again a relative 8% reduction in the WER is reported. Finally, a novel analysis technique is proposed to quantify noise robustness of an acoustic front-end. This analysis is conducted for the acoustic front-ends analyzed in the paper and results are presented. 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized minimum variance distortionless response-based cepstral features for robust continuous speech recognition

In this paper, we present robust feature extractors that incorporate a regularized minimum variance distortionless response (RMVDR) spectrum estimator instead of the discrete Fourier transform-based direct spectrum estimator, used in many front-ends including the conventional MFCC, to estimate the speech power spectrum. Direct spectrum estimators, e.g., single tapered periodogram, have high var...

متن کامل

Regularized MVDR spectrum estimation-based robust feature extractors for speech recognition

In this paper, we present two robust feature extractors that use a regularized minimum variance distortionless response (RMVDR) spectrum estimator instead of the discrete Fourier transform-based direct spectrum estimator, used in many front-ends including the conventional MFCC, for estimating the speech power spectrum. Direct spectrum estimators, e.g., single tapered periodogram, have high vari...

متن کامل

A new perspective on feature extraction for robust in-vehicle speech recognition

The problem of reliable speech recognition for in-vehicle applications has recently emerged as a challenging research domain. This study focuses on the feature extraction stage of this problem. The approach is based on MinimumVariance Distortionless Response (MVDR) spectrum estimation. MVDR is used for robustly estimating the envelope of the speech signal and shown to be very accurate and relat...

متن کامل

Towards an Intelligent Acoustic Front End for Automatic Speech Recognition: Built-in Speaker Normalization

A proven method for achieving effective automatic speech recognition (ASR) due to speaker differences is to perform acoustic feature speaker normalization. More effective speaker normalization methods are needed which require limited computing resources for real-time performance. The most popular speaker normalization technique is vocal-tract length normalization (VTLN), despite the fact that i...

متن کامل

Linear Prediction-based Dereverberation with Advanced Speech Enhancement and Recognition Technologies for the Reverb Challenge

This paper describes systems for the enhancement and recognition of distant speech recorded in reverberant rooms. Our speech enhancement (SE) system handles reverberation with blind deconvolution using linear filtering estimated by exploiting the temporal correlation of observed reverberant speech signals. Additional noise reduction is then performed using an MVDR beamformer and advanced model-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Speech Communication

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2008